Long-term simvastatin attenuates lung injury and oxidative stress in murine acute lung injury models induced by oleic Acid and endotoxin.
نویسندگان
چکیده
BACKGROUND 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors have several pleiotropic effects, including anti-inflammatory properties, and are reported to improve endothelial functions. Pathophysiologically, acute lung injury (ALI) is caused by a severe inflammatory response and endothelial dysfunction. OBJECTIVE To investigate the effects of simvastatin (an HMG-CoA reductase inhibitor) on oxidative stress and lung histopathology in 2 murine models of ALI, induced by oleic acid and endotoxin. METHODS The mice were randomly divided into 2 groups: one received 2 mg/kg/d intraperitoneal simvastatin for 15 days. Then the groups were further divided into 3, which received saline, oleic acid, or endotoxin. Four hours after inducing ALI we obtained lung samples for histopathology analysis, myeloperoxidase, glutathione, and malondialdehyde measurement, and blood samples for malondialdehyde measurement. RESULTS Endotoxin and oleic acid lung injury increased tissue myeloperoxidase (P = .009 for both), decreased tissue glutathione (P = .02 and P = .009, respectively), and increased tissue malondialdehyde (P = .009 for both), compared to the control group. Simvastatin decreased myeloperoxidase only in the oleic acid group (P = .01). Simvastatin increased glutathione (P = .005 and P = .003, respectively) and lowered malondialdehyde in both the endotoxin and oleic acid groups (P = .003 for both). Histopathology revealed that simvastatin protected the lung tissue in both ALI models, but the protection was greater in the endotoxin group. CONCLUSIONS Pretreatment with simvastatin decreased the severity of ALI in oleic acid and endotoxin ALI models, by decreasing inflammation and oxidative stress.
منابع مشابه
Retracted: Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats
متن کامل
p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress
Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...
متن کاملTime course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats
Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI). Materials ...
متن کاملDoes gallic acid improve cardiac function by attenuation of oxidative stress and inflammation in an elastase-induced lung injury?
Objective(s): Cardiovascular disease has an important role in mortality caused by lung injury. Emphysema is associated with impaired pulmonary gas exchange efficiency and airflow limitation associated with small airway inflammation. The aim was to evaluate the interactions between lung injury, inflammation, and cardiovascular disease. Since gallic acid has antioxidant ...
متن کاملAmeliorative effects of silymarin on HCl-induced acute lung injury in rats; role of the Nrf-2/HO-1 pathway
Objective(s): Aspiration is a common cause of acute lung injury (ALI), which lacks an effective treatment. Inflammation and oxidative stress play key roles in ALI development. Silymarin is an active extract of Silybum marianum plant seeds (milk thistle). Silymarin has potent anti-inflammatory and antioxidant effects; however its role in aspiration induced ALI has not b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Respiratory care
دوره 56 8 شماره
صفحات -
تاریخ انتشار 2011